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Abstract: This paper addresses, from a heuristic point of view, the problem of the optimal location and sizing
of distributed generators (DGs) in alternating-current distribution networks with radial topology. A master–slave
optimization approach is followed to place and size the DGs. In the master stage a simple recursive seach method
based on sequential searching is proposed. In the case of the slave algorithm, we present an emerging metaheuristic
for solving the optimal power flow problem. This metaheuristic is called the vortex search algorithm. It works with
a Gaussian distribution and a variable radius function for exploring and exploiting the solution space. Numerical
simulations of 33- and 69-node test feeders show its efficiency, simplicity and robusteness in comparison to other
methods in the literature.
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1 Introduction
Electrical distribution networks are responsible for
providing electricity service to end-users (i.e., indus-
trial, commercial or residential users), and for satisfy-
ing quality, security and reliability criteria [1, 2]. For
economic advantages to the utilities in terms of con-
struction and protection, these grids typically have a
radial structure, being operated under the alternating-
current (AC) paradigm [3, 4]. This structure and the
size of the distribution network make these grids re-
sponsible for high energy losses in the electricity ser-
vice chain [5]. For this reason, all utilities focus their
efforts on providing local solutions (at the distribution
level) to mitigate the total power losses due to the en-
ergy distribution in their grids [6]. These solutions
include the following:

• Optimal selection of conductors for the distri-
bution networks based on power loss indicators
[2, 5].

• Optimal location of capacitor banks for reduc-
ing active power losses based on reactive power
compensation [7, 8, 9, 10].

• Optimal feeder reconfiguration for power loss
reduction based on hourly demand variations
[4, 11, 12]

• Optimal location of distributed generators (DGs)
for power loss minimization [13, 1, 14].

These strategies allow minimizing the total en-
ergy losses of the network by placing devices (capac-
itors or GDs) as well as modifying the configuration
of the grid (installing new conductors or reconfiguring
the network through switches). In the specialized lit-
erature the efficiency of those strategies for power loss
reduction and voltage profile improvement has been
proved [15].

Here we are interested in studying, from a heuris-
tic point of view, the problem of the location and
sizing of DGs at distribution levels. This problem
has been widely studied in the specialized literature
on combinatorial approaches such as: genetic algo-
rithms [13], particle swarm optimization [13], popu-
lation based incremental leaning [1], teaching learn-
ing based optimizer [16, 17], tabu search algorithm
[18], symbiotic organism search [14], krill herd algo-
rithm [19, 20], bat algorithms [21, 22], bacterial for-
aging [23], and flower pollination approaches [7], etc.
There are some reports of approaches based on branch
& bound methods for solving the mixed integer non-
linear programming (MINLP) model that represents
this problem, as reported in [24, 25] and [26]; how-
ever, these approaches use commercial optimization
packages for solving the problem of the optimal place-
ment and sizing of DGs in AC distribution networks,
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which might be inefficient in large scale distribution
networks due to the dimension of the solution space
and the processing times that will be required.

In the case of purely heuristic methods, the most
common approach places the DGs based on loss sensi-
tivity factors [1, 27] and voltage stability indices [26];
nevertheless, the numerical behavior of these methods
remains questionable due to their poor performance
when compared with metaheuristic searches. For this
reason, they are commonly employed as condition-
ers for discrete optimization methods (i.e., genetic al-
gorithms or particle swarm optimizers). Due to the
lack of powerful heuristic methods for addressing this
problem, here we propose an efficient and easily im-
plementable heuristic algorithm for determining the
locations and sizing of DGs in distribution networks.

Our proposal employs a master–slave optimiza-
tion strategy based on a constructive search entrusted
to the location stage in conjunction with the vortex
search algorithm (VSA) that defines the optimal sizing
of the DGs by solving the subsequent optimal power
flow problem in the slave stage. Note that this opti-
mization strategy has not been previously proposed in
the specialized literature, since the VSA was recently
developed [28, 29]; this consitutes a clear opportu-
nity for investigation, to which this paper tries to con-
tribute. In the Results section, the efficiency and accu-
racy of the proposed approach will be noted, since its
results are comparable with those of powerful meta-
heuristics, with the advantage that our approach only
requires a minimal exploration of the solution space
to find an adequate solution.

The remainder of this paper is organized as fol-
lows: Section 2 presents the mathematical formula-
tion of the optimal location and sizing of DGs in
AC radial distribution networks by presenting the
corresponding mixed-integer nonlinear programming
(MINLP) model. Section 3 presents the proposed
heuristic algorithm by solving the location problem
with a constructive search algorithm and solving the
optimal power flow (OPF) problem in the sizing stage
through a VSA. Section 4 presents the complete infor-
mation of the two test feeders. Section 5 presents all
the numerical results of our heuristic approach as well
as a comparison with metaheuristic approaches re-
ported in the specialized literature. Section 6 presents
the main conclusions derived from this work as well
as possible future research.

2 Mathematical formulation
The problem of the optimal location and sizing of DGs
in an AC distribution networks can be represented as
a nonlinear non-convex optimization model with con-

tinuous and discrete variables [25, 26], which leads
to a MINLP model [1]. The objective function of the
model as well as its set of constraints are presented
below.

Objective function:

min z =
n∑
i=1

n∑
j=1

vivjYij cos (θij + δij), (1)

where z is the objective function variable associated to
the total active power losses in all the branches of the
network; vi and vj are the magnitude of the voltage
profiles at nodes i and j, respectively; θij = θi − θj
represents the angular difference of the voltage pro-
files between nodes i and j; Yij and δij are the mag-
nitude and angle of the ijth component of the admit-
tance matrix that relates nodes i and j, respectively.

Set of constraints:

psi + pdgi − p
d
i =

n∑
j=1

ViVjYij cos (θij + δij), ∀i ∈ N ,

(2)

qsi − qdi =
n∑
j=1

ViVjYij sin (θij + δij), ∀i ∈ N , (3)

vmin ≤ vi ≤ vmax, ∀i ∈ N , (4)

pdgminxi ≤ p
dg
i ≤ p

dg
maxxi, ∀i ∈ N , (5)

n∑
i=1

xi ≤ Ndg
max, (6)

xi ∈ {0, 1} , ∀i ∈ N , (7)

where psi and pdgi are the power generation in the slack
and the DG located at node i, while pdi denotes its
active power consumption; qsi and qdi are the reactive
power generation and consumption at node i; vmin and
vmax are the minimum and maximum voltage bounds
of the voltage profile allowed for the grid; pdgmax and
pdgmin are the maximum and minimum power genera-
tion bounds on all the DGs considered for being posi-
tioned inside the network; Ndg

max represents the max-
imum number of generators available, while xi is the
binary variable associated to the placement or not of a
DG at node i (e.g., xi = 1 if the DG is located there
and xi = 0 otherwise.)

The interpretation of the mathematical model (1)–
(7) is as follows: (1) represents the objective func-
tion of the problem, which is associated to the ac-
tive power losses in all the branches of the network.
Eqs. (2) and (3) are the active and reactive power bal-
ance equations in all the nodes of the grid; (4) presents
the voltage regulation constraint per node; (5) de-
fines the maximum power generation capabilities of
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the DGs in terms of the active power production per
node. Eqs. (6) and (7) define the maximum number
of DGs available and the binary nature of the decision
variables.

Remark 1 The mathematical model (1)–(7) can be
solved by implementing master–slave optimization
approaches in order to decouple the location problem
(a discrete problem) from the sizing problem (a con-
tinuous problem).

For this purpose, we propose a master–slave op-
timization approach for addressing this problem as
follows: in the master stage a constructive algorithm
based on recursive optimal power flow solutions, and
in the slave stage each OPF is solved by implementing
a vortex search algorithm. This proposed optimization
approach is presented in the following section.

3 Heuristic optimization approach
Here, we present the master–slave approach for solv-
ing the problem of the optimal location and sizing of
DGs in a radial AC distribution networks by decou-
pling this problem into two subproblems: the master
problem to determine the locations of the generators
and the slave problem determines their optimal sizes.
The main characteristics of the master and slave prob-
lems are studied below.

3.1 Master stage: Constructive algorithm

In this algorithm, the determination of the number of
DGs available to be placed in the AC grid is defined
by a constructive simple algorithm based on recursive
optimal power flow solutions (addressed in detail in
the slave stage). For implementing this constructive
algorithm, suppose that the AC grid is composed by
n − 1 candidate nodes (the slack node is excluded,
since it makes no physical sense to locate a DG at this
node); in addition, suppose the the number Ndg

max of
generators available is greater than or equal to 1. With
this in mind, the next steps are:

1. Begin by placing the first DG in node 2 (i = 1)
and determine its optimal size (minimum power
losses) by solving the resulting OPF model; then
store the node and its final power losses (z) in a
rectangular matrix with the following structure:
R(i, :) = [i + 1, z]. Increase i by i = i + 1 and
repeat this process for all the nodes.

2. Order all the solutions contained in R in ascend-
ing order with respect to the second column; then
select R(1, 1) as the optimal location for the first
DG.

3. Fix the location of this generator in the system
and return to step 1 to place the second generator,
and so on. Note that if a node was previously
selected, then, move over R(k, 1) (k = 2, ..., n)
until finding a node which is not contained in the
set of selected nodes. The process finishes when
the number of nodes selected is equal to Ndg

max.

Remark 2 The number of recursive solutions for
solving the problem of the optimal location and siz-
ing of DGs in AC distribution networks is equal to
Ndg

max× (n−1), which only depends on the number of
candidate nodes as well as the number of DGs avail-
able.

It is important to mention that the proposed con-
structive algorithm (heuristic approach) can be used
to reduce the solution space of the problem, which
allows speeding up the convergence of metaheuris-
tic techniques such as genetic algorithms [13], tabu
search algorithms [18], or any discrete optimization
approach.

Remark 3 Note that the master stage must define
which components of the binary vector x are acti-
vated, i.e., this stage defines which xi take the value 1
and which 0. This implies that the location problem is
solved in this stage.

3.2 Slave stage: Vortex search algorithm

The vortex search algorithm (VSA) is a physi-
cally inspired metaheuristic optimization technique
for single-based numerical optimization of nonlinear
non-convex functions [28]. This technique was in-
spired by the vortical behavior of stirred fluids [29].
VSA provides an adequate balance between the the
exploration and exploitation of the solution space by
modeling its search behavior on a vortex pattern by
using an adaptive step size adjustment scheme [30].
In the exploration step, the VSA uses a wide region
of the solution space to increase the globality of its
search; once the algorithm attains a near sub-optimal
solution its search works in an exploitative manner to
tune the solution to an optimal value.

Here, the VSA is entrusted with solving each OPF
problem defined by the master stage. For this pur-
pose, it concentrates on solving the active and reactive
power balance equations, which are the conventional
power flow equations of AC grids. The unknown vari-
ables in these equations are the voltage profiles vi and
vi, the angular voltages θi and θj , the active and re-
active power generation in the slack node psi and qsi ,
as well as the active power generation in the DGs
pdgi . Note that if we use a conventional Gauss–Seidel,
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Newton–Raphson, or any sweep power flow method,
then all of the power generation in the DGs must be
known in order to solve the power flow problem1.
Hence, to solve the sizing problem, a metaheuristic
approach is needed to determine all the active power
outputs in the DGs, and is presented in the following
steps.

3.2.1 Initial population

The generation of the initial population in the VSA
starts by defining the initial center of a Gaussian dis-
tribution. To do this, we define µ0 as follows:

µ0 =
pmin + pmax

2
, (8)

where pmin and pmax are vectors that contain the min-
imum and maximum bounds of power generation of
the DGs available for sizing. Note that µ0 will per-
mit distributing all the solutions around the physical
center of the solution space.

The second component of the Gaussian distribu-
tion for generating the initial population is the covari-
ance matrix Σ, which is defined here only as the vari-
ance matrix, as recommended in [28]. Suppose that
the variance matrix takes the following form:

Σ = diag
(
σ2
)
, (9)

where σ represents the standard deviation2, which in
the VSA algorithm is related with the adaptive radius
(i.e., r0 = σ0 for the first iteration). Its initial value
can be determined as follows:

σ0 =
max {pmax} −min {pmin}

2
, (10)

It is important to mention that σ in the VSA
method represents the radius of the hypersphere where
the Gaussian distribution will generate all the individ-
uals, which implies that this parameter represents the
external bound of the population. Now, to generate
the population, a Gaussian distribution is defined.

p0 =
(

(2π)d |Σ|
)− 1

2
e{−

1
2

(y−µ)T Σ−1(y−µ)} (11)

Here, p0 represents the initial population, y is a vec-
tor of random variables, and d is the dimension of the

1In the power flow analysis, the slack power balance equa-
tions are not included, which implies that determining psi and qsi is
not necessary, since these are free variables and absorb the power
deficits of the network.

2The operator diag (arg) generates a square matrix with its
diagonal equal to the argument (arg).

population. Note that this initial population is depen-
dent on Σ (i.e., it indirectly depends on σ0) and the
initial center µ0, which will be updated after each it-
eration (t), i.e., these parameters are initialized as σt
and µt for t = 0.

To guarantee that the initial population be feasi-
ble, each individual inside of pt (t = 0) should be
reviewed in order to guarantee that its power genera-
tion lies between pmin and pmax. Once this review has
been made, the initial populationin is contained inside
pt.

3.2.2 Calculation of the new center

When the entire population has been created, then all
of the individuals are passed though the conventional
power flow analysis in order to determine which of
them produces the lowest power losses. Suppose that
pkt (k = 1, 2, ..., d) is the best individual (e.g., it pro-
duces the minimal power losses in the population).
Then this position is assigned as the new center of the
hypersphere, i.e.,

µt+1 = pkt , (12)

Remark 4 Note that the VSA moves the center of the
hypersphere where all the candidate solutions will be
located in order to intensify the exploration about the
most promising solution found up to the iteration t.

3.2.3 Adaptive radius calculation

Once the center of the hypersphere that will contain
all the candidate solutions has been determined, the
radius of the hypersphere is decreased to exploit the
promising region of the solution space, where it is pre-
sumed that the optimal solution of the OPF is located.
In the specialized literature, this reduction is typically
made through incomplete inverse gamma functions
[28, 29] even though such a calculation is complex,
since it uses factorials. Here, we propose an alter-
native calculation using exponential functions as fol-
lows:

rt+1 = σ0

(
1− t

tmax

)
e

(
−a t

tmax

)
, (13)

where a is a constant parameter that governs the speed
of reduction of the radius of the hypersphere that rep-
resents the solution space. After numerical simula-
tions, we recommend that a be set to 6 for an adequate
balance between the exploration and the exploitation
of the solution space. Note that tmax is the maximum
number of iterations assigned for the VSA to solve the
OPF problem.
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Finally, the new population (see Eq. (11)) is gen-
erated by using the new center µt+1 and the adaptive
radius rt+1.

3.3 General comments

The proposed constructive algorithm in the master
stage for determining the optimal location of the DGs
will always find the same solution, since it makes a re-
cursive evaluation per node to determine the most sen-
sitive set of nodes for placing all the power sources in
terms of power loss minimization. This heuristic ap-
proach will reach global or local optimum solutions,
since it depends depends of the number of genera-
tors available and the topology of the network under
study. Note that if there is only one available DG, our
heuristic approach will always attain the global solu-
tion. This is because in that scenario all the solution
space of the problem is evaluated for the recursive ap-
proach.

On the other hand, the VSA algorithm is a pow-
erful combinatorial optimizer that also guarantees
uniqueness of the solution, since its exploration and
exploitation approaches, based on adaptive hyper-
spheres, allows moving its center to promising regions
of the solution space, while its decreasing radius per-
mits exploiting that region.

Remark 5 Note that the proposed master–slave op-
timization approach has not previously been reported
in the specialized literature, and is the main contribu-
tion of the present paper. In addition, it will be used as
a solution space reduction strategy for powerful meta-
heuristic optimization approaches in the discrete do-
main.

4 Test systems
This section presents the electrical configuration as
well as the information about the test system related
to the radial distribution systems employed for vali-
dating the constructive heuristic optimizer for optimal
location and sizing of DGs in AC grids. The first test
feeder is a 33-node test system and the second test
system is a 69-node test feeder. The complete infor-
mation of these test systems is presented below.

4.1 The 33-node test feeder

The configuration of this test system is composed of
33 nodes and 32 branches with 12.66 kV of operat-
ing voltage. The slack node is located at node 1, and
its configuration is presented in Fig. 1. This feeder
has 3715 kW and 2300 kVAr of total active and reac-
tive power demand. The initial active power losses of

this system are 210.9876 kW. For this test system, the
possibility of installing three DGs is considered since
this is the most classical reported solution in the spe-
cialized literature due to its complexity in comparison
with one or two DGs [1]. Each DG is restricted to the
range from 0 kW to 2500 kW3. In addition, we con-
sider as voltage and power base values 12.66 kV and
1000 kW, respectively.

slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23
24
25

19
20
21
22

26 27 28 29 30 31 32 33

Figure 1: Electrical configuration for the 33-node test
system

All the information about the branches as well as
the load consumptions of the 33-node test feeder have
been listed in Table 1.

Table 1: Parameters of the 33-node test feeder
Node i Node j Rij [Ω] Xij [Ω] Pj [kW] Qj [kW]

1 2 0.0922 0.0477 100 60
2 3 0.4930 0.2511 90 40
3 4 0.3660 0.1864 120 80
4 5 0.3811 0.1941 60 30
5 6 0.8190 0.7070 60 20
6 7 0.1872 0.6188 200 100
7 8 1.7114 1.2351 200 100
8 9 1.0300 0.7400 60 20
9 10 1.0400 0.7400 60 20
10 11 0.1966 0.0650 45 30
11 12 0.3744 0.1238 60 35
12 13 1.4680 1.1550 60 35
13 14 0.5416 0.7129 120 80
14 15 0.5910 0.5260 60 10
15 16 0.7463 0.5450 60 20
16 17 1.2890 1.7210 60 20
17 18 0.7320 0.5740 90 40
2 19 0.1640 0.1565 90 40
19 20 1.5042 1.3554 90 40
20 21 0.4095 0.4784 90 40
21 22 0.7089 0.9373 90 40
3 23 0.4512 0.3083 90 50
23 24 0.8980 0.7091 420 200
24 25 0.8960 0.7011 420 200
6 26 0.2030 0.1034 60 25
26 27 0.2842 0.1447 60 25
27 28 1.0590 0.9337 60 20
28 29 0.8042 0.7006 120 70
29 30 0.5075 0.2585 200 600
30 31 0.9744 0.9630 150 70
31 32 0.3105 0.3619 210 100
32 33 0.3410 0.5302 60 40

4.2 The 69-node test feeder

The configuration of this test system consists of 69
nodes and 68 branches with 12.66 kV of operating
voltage. The slack node is located at node 1, and its
configuration is depicted in Fig. 2. This feeder has
3890.7 kW and 2693.6 kVAr of total active and reac-
tive power demand. The initial active power losses of

3These bounds were selected to guarantee equal conditions for
the comparison with techniques reported in the literature.
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36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65

51
52

66
67

68
69

28 29 30 31 32 33 34 35

Figure 2: Electrical configuration for the 69-node test
system

this system are 225.0718 kW. For this test system, we
also consider the possibility of installing three DGs,
each of them restricted to the range from 0 kW to
200 kW. In addition, we also consider as voltage and
power base values 12.66 kV and 1000 kW, respec-
tively.

All the information about the branches as well as
the load consumptions of the 69-node test feeder are
presented in Table 2.

5 Computational validation

To solve the general MINLP model that represents the
problem of the optimal location and sizing of DGs in
radial distribution systems, we implemented the pro-
posed master–slave heuristic optimizer in a desk com-
puter INTEL(R) Core(TM) i5 − 3550, 3.50 GHz, 8
GB RAM with 64-bit Windows 7 Professional.

To demonstrate the robustness and efficiency of
the proposed approach for placing and sizing DGs in
distribution networks, we compare our results with the
solutions previously reported in [14] and [27]. In ad-
dition, we assume that all the DGs are operated with a
unity power factor, as recommended in [1].

In the results section we call our master–slave
optimizer CHVSA, which means the constructive
heuristic vortex search algorithm.

5.1 The 33-node test feeder

In Table 3 are presented a list of solutions provided by
[14] for the 33-node test feeder with the correspond-
ing locations, sizes, and power losses when three DGs
have been considered.

Note that when the CHVSA is applied for the op-
timal location and sizing of the DGs, it reaches a final
power loss of 78.45 kW, which is near the optimal
solution reported in [20], which is 75.41 kW when
the KHA is implemented, and also closer to the so-
lution reported by [31], 76.91 kW when the REPSO
method is applied. This result implies that the pro-
posed CHVSA method is suitable for efficiently de-

Table 2: Parameters of the 69-node test feeder
Node i Node j Rij [Ω] Xij [Ω] Pj [kW] Qj [kW]

1 2 0.0005 0.0012 0 0
2 3 0.0005 0.0012 0 0
3 4 0.0015 0.0036 0 0
4 5 0.0251 0.0294 0 0
5 6 0.3660 0.1864 2.6 2.2
6 7 0.3811 0.1941 40.4 30
7 8 0.0922 0.0470 75 54
8 9 0.0493 0.0251 30 22
9 10 0.8190 0.2707 28 19
10 11 0.1872 0.0619 145 104
11 12 0.7114 0.2351 145 104
12 13 1.0300 0.3400 8 5
13 14 1.0440 0.3450 8 5
14 15 1.0580 0.3496 0 0
15 16 0.1966 0.0650 45 30
16 17 0.3744 0.1238 60 35
17 18 0.0047 0.0016 60 35
18 19 0.3276 0.1083 0 0
19 20 0.2106 0.0690 1 0.6
20 21 0.3416 0.1129 114 81
21 22 0.0140 0.0046 5 3.5
22 23 0.1591 0.0526 0 0
23 24 0.3463 0.1145 28 20
24 25 0.7488 0.2475 0 0
25 26 0.3089 0.1021 14 10
26 27 0.1732 0.0572 14 10
3 28 0.0044 0.0108 26 18.6
28 29 0.0640 0.1565 26 18.6
29 30 0.3978 0.1315 0 0
30 31 0.0702 0.0232 0 0
31 32 0.3510 0.1160 0 0
32 33 0.8390 0.2816 10 10
33 34 1.7080 0.5646 14 14
34 35 1.4740 0.4873 4 4
3 36 0.0044 0.0108 26 18.55
36 37 0.0640 0.1565 26 18.55
37 38 0.1053 0.1230 0 0
38 39 0.0304 0.0355 24 17
39 40 0.0018 0.0021 24 17
40 41 0.7283 0.8509 102 1
41 42 0.3100 0.3623 0 0
42 43 0.0410 0.0478 6 4.3
43 44 0.0092 0.0116 0 0
44 45 0.1089 0.1373 39.22 26.3
45 46 0.0009 0.0012 39.22 26.3
4 47 0.0034 0.0084 0 0
47 48 0.0851 0.2083 79 56.4
48 49 0.2898 0.7091 384.7 274.5
49 50 0.0822 0.2011 384.7 274.5
8 51 0.0928 0.0473 40.5 28.3
51 52 0.3319 0.1140 3.6 2.7
9 53 0.1740 0.0886 4.35 3.5
53 54 0.2030 0.1034 26.4 19
54 55 0.2842 0.1447 24 17.2
55 56 0.2813 0.1433 0 0
56 57 1.5900 0.5337 0 0
57 58 0.7837 0.2630 0 0
58 59 0.3042 0.1006 100 72
59 60 0.3861 0.1172 0 0
60 61 0.5075 0.2585 1244 888
61 62 0.0974 0.0496 32 23
62 63 0.1450 0.0738 0 0
63 64 0.7105 0.3619 227 162
64 65 1.0410 0.5302 59 42
11 66 0.2012 0.0611 18 13
66 67 0.0047 0.0014 18 13
12 68 0.7394 0.2444 28 20
68 69 0.0047 0.0016 28 20

signing DGs, with low computational effort and easy
implementation. In addition, for being a heuristic ap-
proach, it is clear from the results in Table 3 that
CHVSA is efficient, as well as better than classi-
cal techniques such as loss sensitivity factor particle
swarm optimizers [27] or genetic algorithms [33].

An additional important point about CHVSA is
that if only one generator is located, then the opti-
mal solution is node 6, and in the case of two DGs,
the optimal locations are nodes 6 and 14. Besides,
their maximum sizes can be easily determined with
the VSA approach studied in Section 3.
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Table 3: Location and dispatch of the DGs in the 33-
node test feeder

Method Power generation [p.u] (Node) z [kW]
GA [13] 1.5000 (11) 0.4228 (29) 1.0714 (30) 106.30
PSO [13] 1.1768 (8) 0.9816 (13) 0.9297 (32) 105.35
TLBO [17] 0.8847 (9) 0.8953 (18) 1.1958 (31) 104.00
REPSO [31] 1.2274 (6) 0.6068 (14) 0.6870 (31) 76.91
HSA [32] 0.5927 (16) 0.2133 (17) 0.1913 (18) 135.69
SOS [14] 2.2066 (6) 0.2000 (28) 0.7167 (29) 104.19
LSFSA [27] 1.1124 (6) 0.4874 (18) 0.8679 (30) 82.03
KHA [20] 0.8107 (13) 0.8368 (25) 0.8410 (30) 75.41
CHVSA 1.1846 (6) 0.6468 (14) 0.6881 (31) 78.45

5.2 The 69-node test feeder

In Table 4 are presented a list of solutions provided by
[14] for the 69-node test feeder with the correspond-
ing locations, sizes, and resulting power losses, when
three DGs are considered.

From the results in Table 4 it is clear that our
proposed CHVSA is the best solution for the opti-
mal location of three DGs in the 69-node test feeder
by reaching a final power loss of 69.55 kW followed
pretty closely by the best result reported in the spe-
cialized literature, that of the KHA approach, which
obtains 69.56 kW. This result implies that our heuris-
tic approach is the most efficient method in terms of
power losses of all the classical approaches used in the
specialized literature, as can be seen in Table 4.

In the case of the optimal location of only one or
two DGs, the selected nodes are 61 or 17 and 61. Re-
member that their sizes are easily calculated by solv-
ing an OPF with the VSA reported in Section 3.

5.3 Additional comments

It is important to highlight the following aspects of the
proposed CHVSA approach.

• The results provided in Tables 3 and 4 are repro-
ducible by any person if the VSA algorithm is

Table 4: Location and dispatch of the DGs in the 69-
node test feeder

Method Power generation [p.u] (Node) z [kW]
GA [13] 0.9297 (21) 1.0752 (62) 0.9925 (64) 89.00
PSO [13] 0.9925 (17) 1.1998 (61) 0.7956 (63) 83.20
TLBO [17] 0.7574 (25) 1.0188 (60) 1.1784 (63) 81.00
HSA [32] 1.6283 (63) 0.1416 (64) 0.0149 (65) 86.66
SOS [14] 0.2588 (57) 0.2000 (58) 1.5247 (61) 82.08
LSFSA [27] 0.4962 (18) 0.3113 (60) 1.7354 (65) 77.10
KHA [20] 0.4962 (12) 0.3113 (22) 1.7354 (61) 69.56
CHVSA 0.5284 (11) 0.3794 (17) 1.7186 (61) 69.55

parametrized with ten individuals and 1000 iter-
ations, supposing that the maximum capability of
the DGs for both systems are 2000 kW.

• The number of evaluations required by our
method is Ndg

max × (n − 1), which in the case of
the 33-node test feeder is 96 evaluations, and for
the 69-test feeder, 207. This is important since
the dimension of the solution space for these sys-
tems are 4960 and 50116, respectively. This en-
tails that our approach only evaluates 1.94% of
the solution space in the case of the 33-node test
feeder and 0.41% in the case of the 69-node test
feeder.

• The numerical results achieved by the proposed
CHVSA method were checked by solving the ex-
act nonlinear non-convex model (1)–(7) in the
general algebraic modeling system (GAMS) with
the solver BONMIN when the constructive ap-
proach reported in Section 3 is followed. This
implies that our approach is comparable with
commercial optimizing packages and classical
metaheuristic approaches as reported in Tables 3
and 4.

6 Conclusion
In the present paper, a master–slave heuristic opti-
mization approach for solving the problem of the opti-
mal location and dimensioning of distributed genera-
tors in AC radial distribution networks was proposed.
In the master stage a recursive constructive algorithm
for solving the location problem was presented; this
recursive approach allows identifying the most sensi-
tive nodes in terms of power injection and power loss
reduction; these nodes are considered as the solution
of the location problem. In the slave stage the vor-
tex search algorithm was employed to solve the opti-
mal power flow problem in conjunction with a clas-
sical sweep power flow method in order to obtain the
optimal sizes of the generators. The combination of
the master and slave optimization strategies provided
the proposed CHVSA approach with results compara-
ble with those from metaheuristic methods reported in
the specialized literature, such as genetic algorithms,
particle swarm optimizers, loss sensitivity factors, and
krill herd algorithms, among others.

In future work, it would be possible to use the
proposed heuristic search for solving the problem of
the optimal location of capacitor banks in distribution
networks for optimal power loss reduction consider-
ing different demand scenarios.
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